A.D.B. First Grade College, Harapanahalli

Course Outcomes (CO's)

DEPARTMENT OF PHYSICS

B.Sc. I SEMESTER

MECHANICS & PROPERTIES OF MATTER

After completion of this course student should able to

- Explain the basics frames of reference and special theory of relativity.
- Apply conservation laws to understand physical systems.
- > Apply dynamics of rigid bodies to understand physical systems.
- > Explain elastic behaviour of materials.
- Explain properties of fluids based on surface tension and viscosity.
- > Setup experiments for the determination of moment of inertia of bodies.
- > Setup experiments for the determination of elastic properties of solids.
- > Setup experiments to verify laws in mechanics and elasticity.
- > Setup experiments for the determination of surface tension, viscosity and other properties of liquids.

B.Sc. II SEMESTER

ELECTRICITY & MAGNETISM

At the end of the course, students will be able to:

- > Apply electric field concepts to physical systems.
- ➤ Interpret DC & AC electrical circuits.
- > Apply magnetism concepts to physical systems.
- > Apply vector analysis in electromagnet theory.
- > Explain magnetic properties of materials.
- > Design experiments in electricity and magnetism.
- Execute experiments in electricity and magnetism.
- Experientially verify electrical theorems and measure electrical properties of materials.

B.Sc. III SEMESTER

ELECRICITY, VECTOR ANALYSIS & ELECTROMAGNETIC THEORY

At the end of the course, students will be able to:

- > Understand the basic electrical components.
- > Apply network theorems to two terminal linear networks.
- ➤ Understand response of LR, CR and LCR circuits to alternating current/voltage.
- > Understand working of bridges and filters.
- Working principle of CRO.
- Apply vector calculus in various physics calculations.
- ➤ Understand the concepts of Coulomb's law Gauss's law, Biot-Savert's law, Ampere's law and their applications.
- > Understand Electromagnetic waves and their productions

B.Sc. IV SEMESTER

PHYSICAL OPTICS, FIBRE OPTICS & COMPUTATIONAL PHYSICS

At the end of the course, students will be able to:

- ➤ Understand various theories of physical and geometrical optic.
- ➤ Understand the construction and working of optical instruments optical fibres.
- > Understand concepts of special theory of relativity.
- > Understand experimental aspects of interference, diffraction and polarisation.

B.Sc. V Semester (Paper-5)

ATOMIC PHYSICS & LASER

At the end of the course, students will be able to:

- ➤ Understand the calculation of fundamental quantity of an electron-charge and specific charge.
- > Understand the effect of finite nuclear mass.
- ➤ Understand the concept of space quantisation and spinning of the electron and hence the fine structure of atomic spectrum.
- > Understand interaction between spin motion and orbital motion of the electrons.
- ➤ Understand new concepts of modern physics such as Zeeman Effect, Stark Effect and Paschen back effect.
- ➤ Understand the concept of X-rays and their origin and characteristics.
- ➤ Understand the concept of LASER, construction and working of different types of Lasers and their applications in different fields.

B.Sc. V Semester (Paer-6)

MOLECULAR PHYSICS. NUCLEAR PHYSICS & STATISTICAL PHYSICS

At the end of the course, students will be able to:

- ➤ Understand the different types of spectrum exhibited by molecules.
- ➤ Understand the distribution functions such as Fermi-Dirac, Maxwell-Boltzmann and Bose-Einstein distributions.
- ➤ Understand the concepts of theories of radioactivity, nuclear forces, nuclear models, nuclear detectors, nuclear accelerators and nuclear reactions.
- ➤ Understand Cosmic ray discovery and theory of origin of cosmic rays.

B.Sc. VI Semester (Paper-7)

ELECTRONICS, SOLIDSTATE PHYSICS & NANOMATERIALS

At the end of the course, students will be able to:

- > Understand the naming, working, modes of connection & biasing of transistor.
- ➤ Understand the analysis of transistor circuit using h-parameters.
- ➤ Understand op-amp characteristics and applications.
- ➤ Understand types of feedback & oscillator circuit- construction and working.
- ➤ Understand the concept of digital electronics-different types of logic gates & their working, Boolean laws, De-Morgan's theorem and their implications.

- ➤ Understand crystal structure, types of crystals, Bragg's law, and Bragg's spectrometer.
- ➤ Understand the concept of Specific heat of solids & free electron theory of Metals.
- ➤ Understand the concept of Band theory of solids, Superconductivity, Magnetic materials, Nanomaterials.

B.Sc. VI Semester (Paper-8)

RELATIVITY, ASTROPHYSICS, QUANTUM MECHANICS & SPACE PHYSICS

- At the end of the course, students will be able to understand:
- ➤ The Special Theory of Relativity, Limitations of classical (Galilean) Relativity, The Michelson-Morley Experiment.
- ➤ Postulates of the Special Theory of Relativity, Lorentz Transformation, Relativity of Simultaneity, Length Contraction & Time dilation.
- ➤ Relativistic transformation of velocity, relativistic variation of mass, Einstein's mass energy equivalence with illustrations,
- ➤ Concept of Matter Waves- de Broglie hypothesis, Characteristics of matter waves, Group and phase velocity of matter Waves
- ➤ Heisenberg's Uncertainty Principle and applications of the Uncertainty Principle
- ➤ Concept of wave function, Properties of wave function & its Physical significance
- > Schrodinger's Wave Equation in time independent and time dependent forms. Application of Schrodinger's equation.
- ➤ Basic concepts of Astrophysics, Stellar Spectra, Stellar Structure Stellar Evolution,
- > Solar atmosphere electromagnetic radiations from the sun, Solar wind & solar cycles.